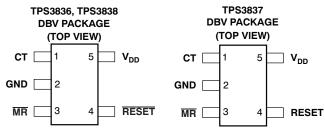

NanoPower Supervisory Circuits

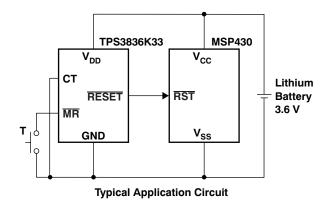

FEATURES

- Supply Current: 220 nA (typical)
- Precision Supply Voltage Supervision Range:
 1.8 V, 2.5 V, 3.0 V, and 3.3 V
- Power-On Reset Generator With Selectable Delay Time: 10 ms or 200 ms
- Push/Pull RESET Output (TPS3836), RESET Output (TPS3837), or Open-Drain RESET Output (TPS3838)
- Manual Reset
- SOT23-5 and 2x2 SON-6 Packages
- Temperature Range: –40°C to +85°C

APPLICATIONS

- Applications Using Low-Power DSPs, Microcontrollers, or Microprocessors
- Portable- and Battery-Powered Equipment
- Intelligent Instruments
- Wireless Communication Systems
- Notebook Computers
- Automotive Systems
- Applications Using the MSP430™

(1) N/C: Not connected.


DESCRIPTION

The TPS3836, TPS3837, and TPS3838 families of supervisory circuits provide circuit initialization and timing supervision, primarily for DSP and processor-based systems.

During power-on, \overline{RESET} is asserted when the supply voltage V_{DD} becomes higher than 1.1 V. Thereafter, the supervisory circuit monitors V_{DD} and keeps the \overline{RESET} output active as long as V_{DD} remains below the threshold voltage of V_{IT} . An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after V_{DD} has risen above the threshold voltage V_{IT} .

When CT is connected to GND, a fixed delay time of typical 10 ms is asserted. When connected to V_{DD} , the delay time is typically 200 ms. When the supply voltage drops below the threshold voltage V_{IT} , the output becomes active (low) again. All the devices of this family have a fixed-sense threshold voltage (V_{IT}) set by an internal voltage divider.

The TPS3836 has an active-low, push-pull RESET output. The TPS3837 has an active-high, push-pull RESET, and the TPS3838 integrates an active-low, open-drain RESET output. The product spectrum is designed for supply voltages of 1.8 V, 2.5 V, 3.0 V, and 3.3 V. The circuits are available in either a SOT23-5 or 2x2 SON-6 package. The TPS3836, TPS3837, and TPS3838 families are characterized for operation over a temperature range of -40°C to +85°C.

 \triangle

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MSP430 is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

PRODUCT	NOMINAL SUPPLY VOLTAGE	THRESHOLD VOLTAGE (V _{IT}) ⁽²⁾
TPS383xE18	1.8 V	1.71 V
TPS383xJ25	2.5 V	2.25 V
TPS383xH30	3.0 V	2.79 V
TPS383xL30	3.0 V	2.64 V
TPS383xK33	3.3 V	2.93 V

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range, unless otherwise noted.

	TPS383xx	UNIT
Supply voltage, V _{DD} ⁽²⁾	7	V
All other pins ⁽²⁾⁽³⁾	-0.3 to 7	V
Maximum low output current, I _{OL}	5	mA
Maximum high output current, I _{OH}	-5	mA
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$)	±10	mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD})	±10	mA
Continuous total power dissipation	See Dissipation Ratings	Гable
Operating temperature range, T _A	-40 to +85	°C
Storage temperature range, T _{STG}	-65 to +150	°C
Soldering temperature	+260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	T _A < +25°C POWER RATING	T _A = +70°C POWER RATING	T _A = +85°C POWER RATING	
DBV	437 mW	3.5 mW/°C	280 mW	227 mW
DRV Low-K ⁽¹⁾	715 mW	7.1 mW/°C	395 mW	285 mW
DRV High-K ⁽²⁾	1540 mW	15.4 mW/°C	845 mW	615 mW

¹⁾ The JEDEC low-K (1s) board used to derive this data was a 3in x 3in, two-layer board with 2-ounce copper traces on top of the board.

⁽²⁾ Custom threshold voltages are available. Minimum order quantities apply. Contact factory for details and availability.

⁽²⁾ All voltage values are with respect to GND.

⁽³⁾ If RESET or RESET are pulled above V_{DD}, the internal ESD structure will present an effective 1.5 kΩ resistor between these pins, causing leakage current to flow into the RESET or RESET pin.

⁽²⁾ The JEDEC high-K (2s2p) board used to derive this data was a 3in x 3in, multilayer board with 1-ounce internal power and ground planes and 2-ounce copper traces on the top and bottom of the board.

RECOMMENDED OPERATING CONDITIONS

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.6	6	V
Voltage range, CT, MR, RESET, and RESET pins	0	$V_{DD} + 0.3$	V
High-level input voltage, V _{IH}	$0.7 \times V_{DD}$		V
Low-level input voltage, V _{IL}		$0.3\times V_{DD}$	V
Input transition rise and fall rate at \overline{MR} , $\Delta t/\Delta V$		100	ns/V
Operating temperature range, T _A	-40	+85	°C

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, unless otherwise noted.

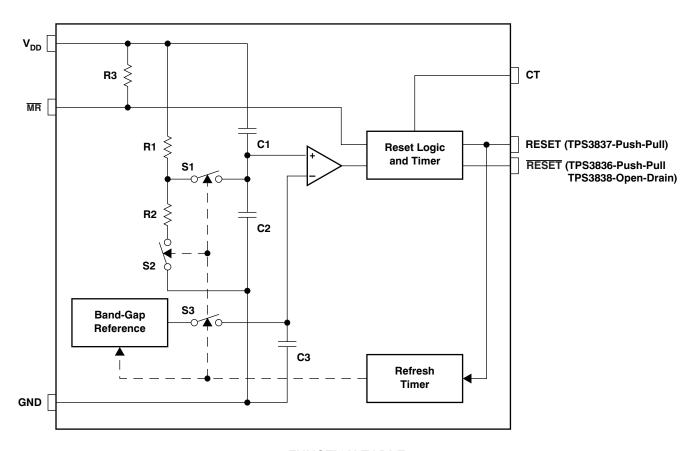
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		RESET	$V_{DD} = 3.3 \text{ V}, I_{OH} = -2 \text{ mA}$				
V	I Pade Javas Laudaud via Kana	(TPS3836)	$V_{DD} = 6 \text{ V}, I_{OH} = -3 \text{ mA}$	0.0\/			V
V_{OH}	High-level output voltage	RESET	$V_{DD} = 1.8 \text{ V}, I_{OH} = -1 \text{ mA}$	$0.8 \times V_{DD}$			V
		(TPS3837)	$V_{DD} = 3.3 \text{ V}, I_{OL} = -2 \text{ mA}$				
		RESET	$V_{DD} = 1.8 \text{ V}, I_{OL} = 1 \text{ mA}$				
V_{OL}	Low-level output voltage	(TPS3836, TPS3838)	$V_{DD} = 3.3 \text{ V}, I_{OL} = 2 \text{ mA}$			0.4	V
OL	1	RESET	$V_{DD} = 3.3 \text{ V}, I_{OL} = 2 \text{ mA}$				
		(TPS3837)	$V_{DD} = 6 \text{ V}, I_{OL} = 3 \text{ mA}$				
	Power-up reset voltage (1)	TPS3836, TPS3838	$V_{DD} \ge 1.1 \text{ V}, I_{OL} = 50 \mu\text{A}$			0.2	V
		TPS3837	$V_{DD} \ge 1.1 \text{ V}, I_{OL} = -50 \mu\text{A}$	$0.8 \times V_{DD}$			V
		TPS383xE18		1.66	1.71	1.74	
		TPS383xJ25		2.18	2.25	2.29	V
V_{IT}	Negative-going input threshold voltage ⁽²⁾	TPS383xH30	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.70	2.79	2.85	
	Vollago	TPS383xL30		2.56	2.64	2.69	
		TPS383xK33				2.99	
			1.7 V < V _{IT} < 2.5 V		30		
V_{HYS}	Hysteresis at V _{DD} input		$2.5 \text{ V} < \text{V}_{\text{IT}} < 3.5 \text{ V}$		40		mV
			3.5 V < V _{IT} < 5 V		50		
I	High-level input current	MR (3)	$\overline{MR} = 0.7 \times V_{DD}, V_{DD} = 6 \text{ V}$	-40	-60	-100	μΑ
I _{IH}	riigii-level iliput current	СТ	$CT = V_{DD} = 6 V$	-25		+25	nA
I _{IL}	Low-level input current	MR (3)	$\overline{MR} = 0 \text{ V}, \text{ V}_{DD} = 6 \text{ V}$	-130	-200	-340	μΑ
'IL	Low level input current	СТ	$CT = 0 V, V_{DD} = 6 V$	-25		+25	nA
I_{OH}	High-level output current	TPS3838	$V_{DD} = V_{IT} + 0.2 \text{ V}, V_{OH} = V_{DD}$			25	nA
			$V_{DD} > V_{IT}$, $V_{DD} < 3 V$		220	400	nA
I_{DD}	Supply current	$V_{DD} > V_{IT}, V_{DD} > 3 V$ 250		250	450	ПА	
			$V_{DD} < V_{IT}$	10		15	μΑ
	Internal pull-up resistor at MR				30		kΩ
C_{I}	Input capacitance at MR and C	Т	$V_I = 0 V \text{ to } V_{DD}$		5		pF

 ⁽¹⁾ The lowest voltage at which the RESET output becomes active. t_R, V_{DD} ≥ 15 µs/V.
 (2) To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminal.
 (3) If manual reset is unused, MR should be connected to V_{DD} to minimize current consumption.

SWITCHING CHARACTERISTICS

At T_A = +25°C, R_L = 1 M Ω , and C_L = 50 pF, unless otherwise noted.

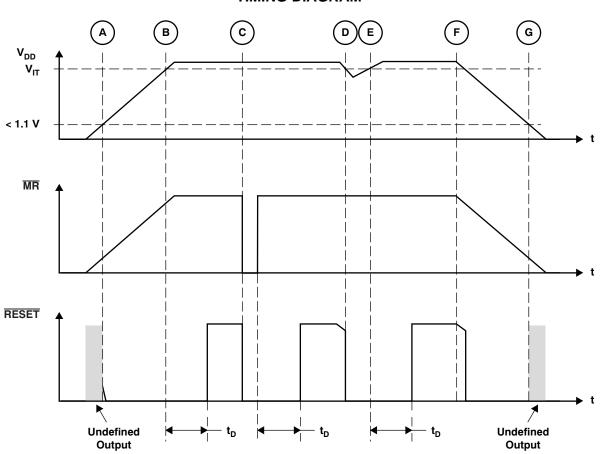
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Delayating		$V_{DD} \ge V_{IT} + 0.2 \text{ V}, \overline{MR} = 0.7 \times V_{DD},$ CT = GND, See Timing Diagram	5	10	15	ms
t _D Delay time			$V_{DD} \ge V_{IT} + 0.2 \text{ V}, \overline{MR} = 0.7 \times V_{DD},$ $CT = V_{DD}, \text{ See Timing Diagram}$	100	200	300	1115
	Propagation (delay) time,	V _{DD} to RESET	$V_{IL} = V_{IT} - 0.2 \text{ V}, V_{IH} = V_{IT} + 0.2 \text{ V}$			10	
t _{PHL}	high-to-low-level output	delay (TPS3836, TPS3838)	V _{IL} = 1.6 V			50	μs
	Propagation (delay) time,	V _{DD} to RESET	$V_{IL} = V_{IT} - 0.2 \text{ V}, V_{IH} = V_{IT} + 0.2 \text{ V}$			10	110
t _{PLH}	low-to-high-level output	delay (TPS3837)	V _{IL} = 1.6 V			50	μs
t _{PHL}	Propagation (delay) time, high-to-low-level output	MR to RESET delay (TPS3836, TPS3838)	$V_{DD} \ge V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \times V_{DD}, V_{IL} = 0.7 \times V_{DD}$			0.1	μs
t _{PLH}	Propagation (delay) time, low-to-high-level output	MR to RESET delay (TPS3837)	$V_{DD} \ge V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \times V_{DD}, V_{IL} = 0.7 \times V_{DD}$			0.1	μs


TIMING REQUIREMENTS

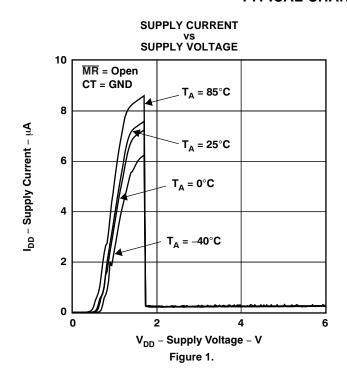
At T_A = +25°C, R_L = 1 M Ω , and C_L = 50 pF, unless otherwise noted.

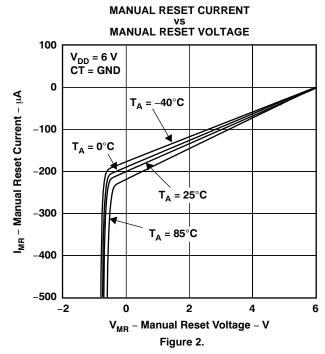
PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Pulse width	at V _{DD}	$V_{IH} = V_{IT} + 0.2 \text{ V}, V_{IL} = V_{IT} - 0.2 \text{ V}$	6			
ιW	Puise width	at MR	$V_{DD} \ge V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \times V_{DD}, V_{IH} = 0.7 \times V_{DD}$	1			μs

FUNCTIONAL BLOCK DIAGRAM

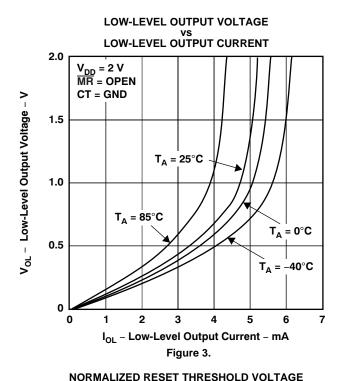

FUNCTION TABLE

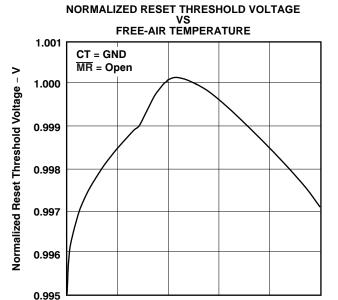
MR	V _{DD} > V _{IT}	RESET (1)	RESET ⁽²⁾
L	0	L	Н
L	1	L	Н
Н	0	L	Н
Н	1	Н	L


- (1) TPS3836 and TPS3838.
- (2) TPS3837.



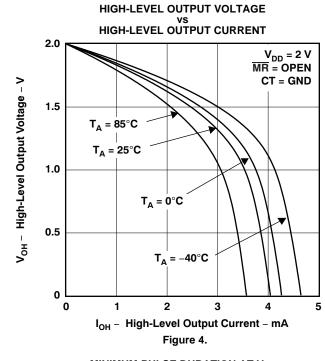
TIMING DIAGRAM

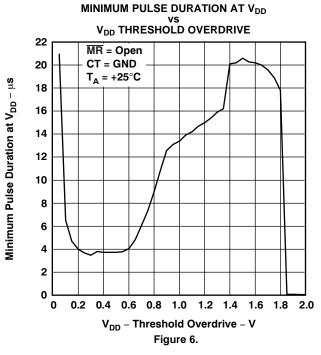

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS (continued)

10


 T_A - Free-Air Temperature - $^{\circ}$ C


Figure 5.

35

60

85

-15

-40

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
HPA00531DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836E18DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836E18DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836E18DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836E18DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836H30DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836H30DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836H30DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836H30DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836J25DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836J25DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836J25DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836J25DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836K33DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836K33DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836K33DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836K33DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836L30DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836L30DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836L30DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3836L30DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837E18DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837E18DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837J25DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837J25DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

om 13-Oct-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS3837J25DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837J25DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837K33DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837K33DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837K33DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837K33DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837L30DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837L30DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837L30DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3837L30DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838E18DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838E18DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838E18DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838E18DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838J25DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838J25DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838J25DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838J25DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DRVR	ACTIVE	SON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DRVRG4	ACTIVE	SON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DRVT	ACTIVE	SON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838K33DRVTG4	ACTIVE	SON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

13-Oct-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS3838L30DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838L30DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838L30DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3838L30DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

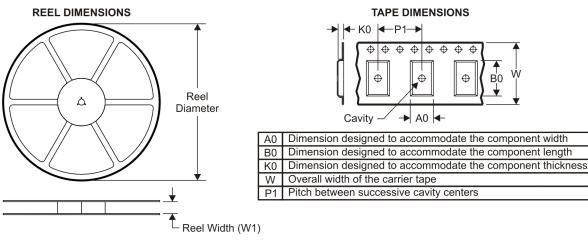
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

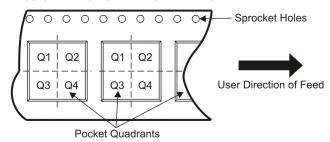
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS3836E18, TPS3836H30, TPS3836H30, TPS3836K33, TPS3836L30, TPS3837E18, TPS3837J25, TPS3837K33, TPS3837L30, TPS3838E18, TPS3838J25, TPS3838K33, TPS3838L30:

- Automotive: TPS3836E18-Q1, TPS3836H30-Q1, TPS3836J25-Q1, TPS3836K33-Q1, TPS3836L30-Q1, TPS3837E18-Q1, TPS3837J25-Q1, TPS3837K33-Q1, TPS3837L30-Q1, TPS3838E18-Q1, TPS3838J25-Q1, TPS3838L30-Q1
- Enhanced Product: TPS3836L30-EP, TPS3837K33-EP


NOTE: Qualified Version Definitions:

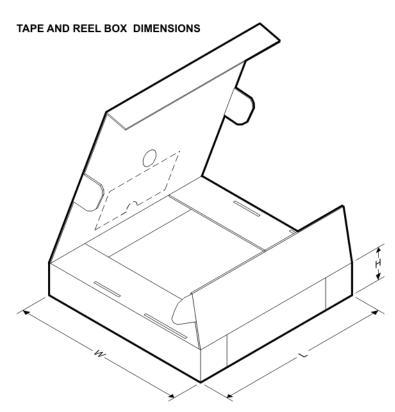
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications



29-Jul-2008

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

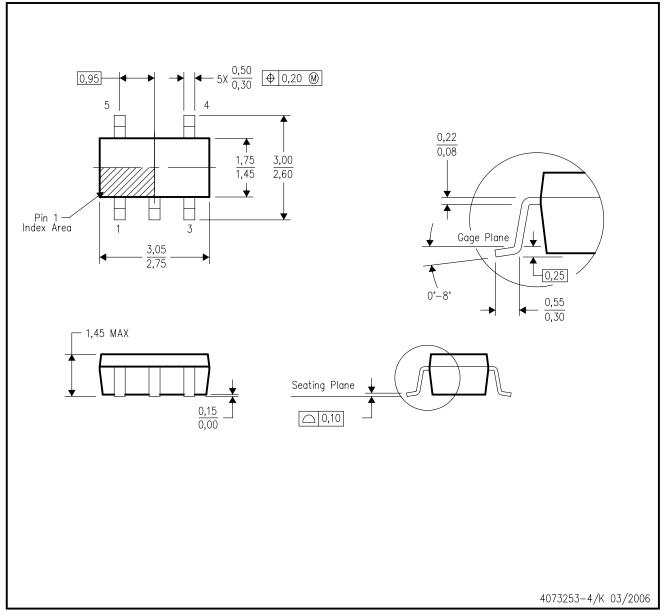
*All dimensions are nominal	T	I										
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	(mm)	Pin1 Quadrant
TPS3836E18DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836E18DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836H30DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836H30DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836J25DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836J25DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836K33DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836K33DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836L30DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3836L30DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837E18DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837J25DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837J25DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837K33DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837K33DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837L30DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3837L30DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838E18DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3

29-Jul-2008

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3838E18DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838J25DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838J25DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838K33DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838K33DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838K33DRVR	SON	DRV	6	3000	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS3838K33DRVT	SON	DRV	6	250	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS3838L30DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS3838L30DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3

*All dimensions are nominal

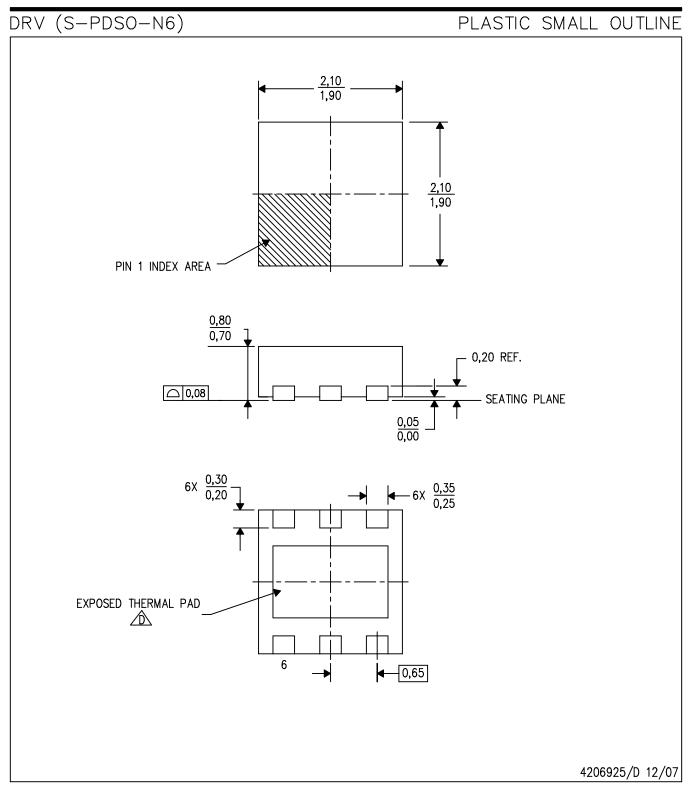
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3836E18DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3836E18DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3836H30DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3836H30DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3836J25DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3836J25DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3836K33DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3836K33DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0


PACKAGE MATERIALS INFORMATION

29-Jul-2008

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3836L30DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3836L30DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3837E18DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3837J25DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3837J25DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3837K33DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3837K33DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3837L30DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3837L30DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3838E18DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3838E18DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3838J25DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3838J25DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3838K33DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3838K33DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TPS3838K33DRVR	SON	DRV	6	3000	195.0	200.0	45.0
TPS3838K33DRVT	SON	DRV	6	250	195.0	200.0	45.0
TPS3838L30DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS3838L30DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0

DBV (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

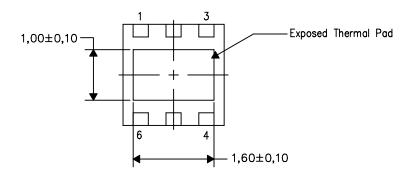
- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

THERMAL PAD MECHANICAL DATA

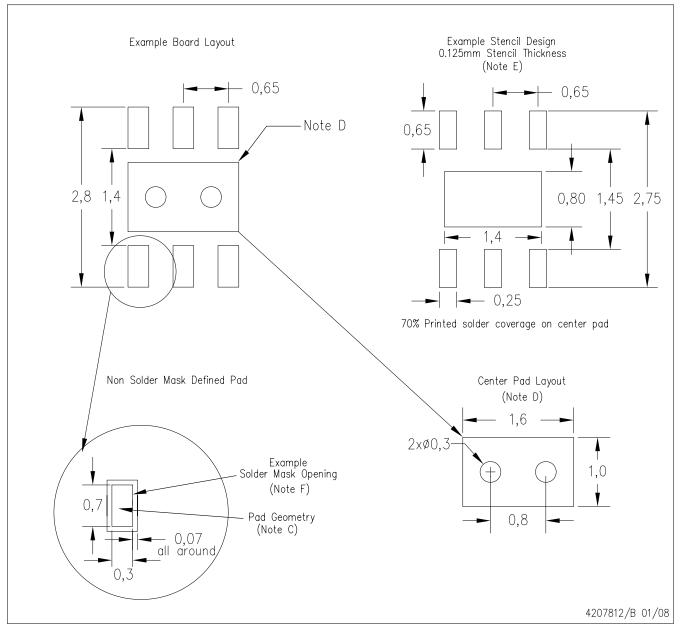

DRV (S-PDSO-N6)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DRV (S-PDSO-N6)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated